

SYSTEMS PERFORMANCE RECEIVED - JINDABYNE

Catalyst One

marter consulting e

engineers

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW

ENVIRONMENTAL

WASTEWATER

CIVIL

2

P1504591JR01V01 January 2015

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to provide a Geotechnical Investigation in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and Catalyst One (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from site investigations, correspondence regarding the proposal and examination of relevant literature. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Paae 2

© January 2015 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-9999** Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

Document and Distribution Status							
Author(s) Reviewer(s)			Project Manager	Project Manager		ature	
Adam Budji		Ralph Erni Jeff Fulton		Jeff Fulton		Luch	
					Documen	nt Location	
Revision No.	Description	Status	Release Date	File Copy	Catalyst One		
1	Geotechnical Investigation	Final	22.01.15	1E,1P,1H	۱P	£2	
	11						

Distribution Types: F = Fax, H = Hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1 INTRODUCTION	5
1.1 Overview	5
1.2 Field Investigations	5
2 GEOTECHNICAL ASSESSMENT	6
2.1 Site Conditions	6
2.2 Sub-surface Conditions	6
2.2.1 Observed Sub-surface Conditions	6
2.2.2 Groundwater	7
2.3 Geotechnical Recommendations	/
2.3.1 Proposed Footing Systems and Founding Levels	/ 8
2.3.3 Seasonal Effects	9
2.3.4 Site Classification	9
2.4 Construction Considerations	9
2.5 Inspection and Monitoring and Contingency	10
2.5.1 Further Investigations	10
2.5.2 Further Monitoring and Inspection Program	10
2.5.5 Comingency Fidit	10
3 RISK ASSESSMENT OF PROPOSED DEVELOPMENT WORKS	11
3.1 AGS (2007) Risk Assessment	10
	12
	1.1
	. 14
	. 15
	10
	. 13
	. 16
IU ATTACHMENT D - AGS (2007) KISK ASSESSMENT	. 18
11 ATTACHMENT E – EXAMPLE OF GOOD HILL SLOPE ENGINEERING PRACTICES	24
	. 25
IS ATTACHMENT G – NOTES RELATING TO THIS REPORT	. 28

1 Introduction

1.1 Overview

This document reports the findings of a geotechnical investigation undertaken for a proposed 25m high telecommunication monopole to be located at Thredbo Ski Resort, Thredbo, NSW (Optus Site S8596). The area of investigation was restricted to the south of the maintenance shed 'The Cat Shed' (Figure 1, Attachment A).

This report has been prepared in general accordance with AS1726 (1993), the requirements of the Client and the agreed scope of work. It provides descriptions of sub-surface conditions encountered during field investigations, with corresponding geotechnical design parameters and recommendations, and in-situ soil resistivity test results.

1.2 Field Investigations

Field investigations, conducted on January14, 2015, included:

- General walkover inspection to assess existing site conditions and local topography, geology, exposed soil conditions, drainage and vegetation.
- Reviewing DBYD survey plans and on-site search for buried services in the investigation area.
- Two test pits (TP101 to TP102), excavated up to 2.4 meters below ground level (m bgl) using a 7t excavator with a toothed bucket to characterise sub-surface materials. Steep grades and loose surface materials along access track prevented the use of a convention drilling rig.
- Two Dynamic Cone Penetrometer (DCP) tests (DCP101 and DCP 102) up to 1.3 m bgl, to estimate soil strength in accordance with AS 1289.6.3.2 (1997).
- Soil resistivity testing using an AEMC 4620 Ground Resistance Tester and adopting the Wenner 4 pin method in accordance with Standards Australia HB 160 (2006).
- o Collection of samples for future reference.

Approximate test locations are shown on a site plan in Figure 1, Attachment A.

2 Geotechnical Assessment

2.1 Site Conditions

Table 1 summarises site conditions considered relevant to the investigation. Photos of the investigation area are provided in Attachment A.

 Table 1: Site conditions.

Item	Description/ Detail
Topography	Moderately steep to steep grades, moderately undulating terrain.
Expected Geology	The Tallangatta 1:250,000 Geological Series Sheet SJ 55-3 describes the geology at the site as lower Devonian volcanic, generally consisting of granite and granodiorite.
Expected Soil landscape	The NSW Soil and Land Information eSPADE (survey, OBSCRA – KOSCIUSKO 1003650) describes the soils at the site as humose- acidic mesotrophic yellow kandosol.
Site aspect	South west
Typical slopes/ Elevation	Generally 5-10%, between 1,496 and 1,494m AHD
Existing vegetation	Grass (cleared forest)
Site drainage	Via overland flow south west towards Thredbo River

2.2 Sub-surface Conditions

2.2.1 Observed Sub-surface Conditions

Table 2 presents a summary of encountered sub-surface materials and conditions to investigation termination depth, inferred from test pit and DCP test results. Encountered conditions are described in more detail on excavation logs, Attachment B, photos of test pits, Attachment A and associated explanatory notes, Attachment G.

Table 2: Preliminary material properties based on TP101.

	Dept	h(m)²
Layer ¹	TP101	TP102
TOPSOIL: Sandy clay (firm to stiff)	0.0 - 0.6	0.0 - 0.5
RESIDUAL: Clay (stiff to very stiff)	0.6 - 1.5	0.5-1.1
WEATHERED ROCK: Granite (inferred very low strength) distinctly weathered	1.5 – 2.43	1.1 – 1.83
ROCK: Granite (inferred low to possibly high strength) ⁴	>2.4	>1.8

Notes:

¹ Refer to test pit logs (Attachment B) for more detailed material descriptions at test locations.

² Indicative depth range below ground level, to end of test pits, which may vary across site

depending on site and local geological conditions.

³ Termination depth due to test pit refusal.

⁴Low strength inferred at test pit termination depth. Strength of granite may increase rapidly to high below this depth. Rock conditions should be further assessed by additional investigation such as rocking coring, to assess foundation and foundation excavation limitations.

Isolated granite exposures were observed at surface level across the area.

2.2.2 Groundwater

Groundwater inflow was not observed in the excavations to a depth of 2.4 m bgl. Further testing would be required to assess long-term groundwater conditions, if necessary.

2.3 Geotechnical Recommendations

2.3.1 Proposed Footing Systems and Founding Levels

We recommend the following options:

- Shallow footings for lightly loaded, high-level structures, such as equipment shelters founding on residual soil, 0.75 m below final ground levels.
- A shallow pad footing e.g. square footing as support for the monopole, founding on low strength (or higher) rock. The limited access conditions will likely preclude the use of a piling rig that is capable of drilling into possible high strength granite for the provision of an adequate socket for pile foundations. Shoring of exposed soils will be required and adequately designed by a qualified geotechnical or structural engineer.
- The use of rock anchors or group of shorter piers may be considered to limit the size of pad footing.

2.3.2 Preliminary Material Properties and Design Parameters

Preliminary material properties, inferred from DCP test results and observations during excavations, such as excavation resistance, are summarised in Table 3. Table 4 summarises geotechnical parameters for encountered sub-surface conditions recommended for design of new shallow and deepened single pad footings or anchors for the new monopole.

Table 3: Preliminary material properties.

Layer	Υ 1 (kN/m³)	Cu ^{2,4} (kPa)	Ø' 3,4 (*)	E' « (MPa)
TOPSOIL: Sandy clay (firm to stiff)	18	50		10
RESIDUAL: Clay (stiff to very stiff)	19	100	-	30
WEATHERED ROCK: Granite (inferred very low strength) distinctly weathered	22	-	35	75
ROCK: Granite (inferred low to possibly high strength)	23		40	100

Notes:

¹ Material unit weight, based on visual assessment (± 10%).

² Undrained cohesion, assuming normally consolidated clay (± 10%).

³ Effective internal friction angle $(\pm 2^{\circ})$.

⁴ Cohesion and friction angle of soil, that apply to transient loading conditions, e.g. wind loading. In rock, values apply concurrently for short and long-term loading. These are derived by reducing intact rock strength to take account of discontinuities in, and weathering of, the rock mass. ⁵ Effective elastic modulus (± 10%), that should be adopted to calculate lateral deflection of pile in soil under serviceability loading.

Table 4: Recommended geotechnical design parameters.

	Shallow Footings	Rock Anchors ²	W. C	
Layer	A EB 1.4	ASF 3,4	Ka²	Kρ°
TOPSOIL: Sandy clay (firm to stiff)	NA ⁸	NA ⁸	0.4	2.4
RESIDUAL: Clay (stiff to very stiff)	854	NA ⁸	0.37	2.7
WEATHERED ROCK: Granite (inferred very low strength) distinctly weathered	3507	20	-	•
ROCK: Granite (inferred low to possibly high strength)	6007	50	-	-

Notes:

¹ Allowable end bearing pressure (kPa) for footings embedded at least 0.5 m into the design material type.

² Assuming corrosion protected, grouted rock anchors.

³ Allowable skin friction (kPa) in uplift, assuming intimate contact between anchor and foundation material. We recommend checking against 'piston' and 'cone' pull-out mechanisms in accordance with AS2159 (2009).

⁴ AEB and ASF are given with estimated factors of safety of 3 and 2 respectively. These are generally adopted in geotechnical practice to limit settlement to an acceptable level for conventional building structures and to 25 mm for a large single pad footing.

 5 K_a = Coefficient of active earth pressure; K_p = Coefficient of passive earth pressure.

⁶ Assuming lightly loaded structures supported by square footing with $D_I/B < 0.5$ and $D_I > 0.75$ m bgl. ⁷ Assuming square pad footing with B < 5m, $D_I/B < 0.5$ and $D_I > 1.5$ m bgl.

⁸ Not applicable, or side adhesion not recommended either due to shallow depth or potential internal settlement of materials.

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 8 Design parameters in Table 4 assume the base of excavation is free of loose or soft soils and water prior to placement of concrete. Higher design values may be applied subject to results of further investigations, including rock coring, and laboratory testing.

2.3.3 Seasonal Effects

We understand the site is situated in an area exposed to extreme seasonal temperature changes and sudden changes in weather conditions. We recommend the following:

- Provision of surface drainage within the development area to limit erosion of surface materials from surface water runoff.
- Provision of surface and subsurface drainage within the development area to limit groundwater infiltration beneath footing which may cause frost heave/thawing settlements.

2.3.4 Site Classification

A preliminary site classification of 'M' should be adopted for design of lightly loaded shallow footings, in accordance with AS 2870 (2011), subject to provision of adequate site drainage and recommendations presented in this report.

2.4 Construction Considerations

Trafficability on unsealed tracks and exposed clay soils will likely be poor in wet weather conditions. In addition, site accessibility for machinery will need to be assessed in view of presence and condition of steep access tracks.

The contractor should consider potential difficulties in penetrating possible high (or higher) strength rock in excavations below investigation termination depths in relation to capabilities of specific machinery proposed.

Should groundwater inflows be encountered during deep excavations, these are likely manageable by pumping. Alternatively adopt a tremmie system for concrete/grout placement, from excavation base upwards, limiting delays between placement and excavation completion.

2.5 Inspection and Monitoring and Contingency

2.5.1 Further Investigations

1

We recommend the following supplementary investigations are undertaken and advice is provided for design development (Table 5).

Table 5: Recommended supplementary investigations and advice for designdevelopment.

Scope of Works	Timing	Who to Complete
Drilling of additional boreholes to assess depth and condition below investigation termination depths.	Before finalisation of design or construction.	MA1
<u>Notes:</u> MA=Martens & Associates Pty Ltd		

2.5.2 Further Monitoring and Inspection Program

We recommend the following is inspected and monitored (Table 6) during site construction works.

Scope of Works	Frequency/Duration	Who to Complete
Monitor seepage from excavation to assess adequacy of drainage provision	When encountered	Builder/MA1
Monitor sedimentation downslope of excavated areas	During and after rainfall events	Builder
Monitor sediment and erosion control structures to assess adequacy and for removal of built up spoil	After rainfall events	Builder
Inspect exposed material at foundation level to verify suitability as foundation/ lateral support/ subgrade	Prior to reinforcement set-up and concrete placement or pavement construction	МА
Notes: MA=Martens & Associates Pty Ltd		

 Table 6: Recommended inspections/ monitoring requirements during site works.

2.5.3 Contingency Plan

MA is to be notified and may need to provide additional advice if conditions are different to those reported.

In the event that the proposed development works cause an adverse impact on overall site stability, works shall cease immediately. The nature of the impact shall be documented and the reason(s) for the adverse impact investigated. This might require a site inspection by an experienced geotechnical or structural engineer and a review of geotechnical requirements for site retention and foundations.

3 **Risk Assessment of Proposed Development Works**

3.1 AGS (2007) Risk Assessment

A geotechnical hazard risk assessment for the proposed works has been completed in accordance with the qualitative risk matrices provided in Section 7 of the AGS (2007) guidelines. We have considered five main geotechnical hazards. These and associated risks are described in Table 7 and Table 8, respectively, assuming recommend treatment option have been adopted. Risk calculation sheets are provided as Attachment D.

Table 7: Geotechnical hazards and treatment.

Hazard	Probability	Treatment Recommendations
Shallow Rotational Slides (upslope and downslope of development area)	Possible/Unlikely	Ensure good hill slope engineering practice is adopted. Maintain vegetation cover. Do not over-steepen natural grades without suitable shoring support. Do not place excessive load onto natural surfaces unless designed for. Limit ponding of surface water and provide adequate surface and sub-surface drainage throughout the site.
Translational Slide	Unlikely	Ensure good hill slope engineering practice is adopted. Maintain vegetation cover where possible. Do not over- steepen natural grades without suitable shoring support. Do not place excessive load onto natural surfaces unless designed for. Maintain appropriate surface and subsurface drainage.
Soil Creep	Likely	Ensure good hills slope engineering practice is adopted. Maintain vegetation. Ensure appropriate foundations and footings design. Maintain appropriate surface and subsurface drainage.
Boulders	Unlikely	Ensure good hills slope engineering practice is adopted. Maintain vegetation. Do not place excessive load onto natural surfaces unless designed for.

Notes:

¹ Assuming treatment recommendations have been included in the development.

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 11

Hazard	<u>Risk to</u>	<u>Risk to Life</u> <u>Risk to Pr</u>		<u>perty</u>	Conclusion
Hazara	Probability	Risk	Consequence	Risk	Conclusion
Shallow rotational slide	Unlikely	1.13x10-7	Minor	Low	Acceptable
Deep rotational slide	Unlikely/ possible	2.50x10-7	Minor	Low	Acceptable
Translational slide	Unlikely	1.13x10-7	Minor	Low	Acceptable
Soil creep	Likely	5.00x10-7	Minor	Low	Acceptable
Boulders	Unlikely	4.50x10-7	Moderate	Low	Acceptable

Table 8: Slope instability risk assessment based on AGS (2007).

The proposed development is considered to constitute an acceptable risk to life and property resulting from assessed geotechnical hazards in accordance with AGS 2007, provided that good hill slope engineering practices (as provided as Attachment F), the slope treatment measures presented in Table 7 and recommendations presented in this report are adopted. We point out that it is the responsibility of the client and stakeholders to ultimately decide whether the risk is acceptable.

3.2 Conclusion

In conclusion, this report has documented the sub-surface conditions encountered at the site and has provided geotechnical design recommendations and parameters for the proposed monopole based on existing site conditions and constraints. Provided that all the recommendations and advice have been adopted in this report, the site is suitable for the proposed development.

4 Soil Resistivity

The results of in-situ soil resistivity testing are summarised in Table 9.

		No	North - South Transect ¹		st – West Transect
Test Number	Rod Spacing (m)	Rod Depth (m)	Measured Ohms (Ω)	Rod d Ohms (Ω)Rod Depth (m)Measured Ohms (Ω),6420.21,80030.00.2678.9	
1	1	0.2	1,642	0.2	1,800
2	2	0.2	730.0	0.2	678.9
3	4	0.2	521.9	0.2	462.0
4	8	0.2	164.0	0.2	291.0

Notes:

¹ Refer to the site plan in Attachment A for indicative transect alignments.

² The following formula can be used to determine resistivity (based on AEMC Instruments user manual (2012), Section 5.5): $\mathbf{p} = 2\pi r \mathbf{a}$, where

 \circ p = resistivity (Ω m)

o $r = measurement in \Omega$ from columns 4 and 6

 \circ a = rod spacing from column 2

5 Limitations

The recommendations presented in this report include specific issues to be addressed during the construction phase of the project. In the event that any of the construction phase recommendations presented in this report are not implemented, the general recommendations may become inapplicable and Martens & Associates accept no responsibility whatsoever for the performance of the works undertaken where recommendations are not implemented in full and properly tested, inspected and documented.

Occasionally, sub-surface conditions between and below the completed boreholes and other tests may be found to be different (or may be interpreted to be different) from those expected. Groundwater conditions may also vary, especially after climatic changes. If such differences appear to exist during construction, we recommend that you immediately contact Martens & Associates.

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 14

6 References

Australian Geomechanics Society, Landslide Zoning Working Group(March 2007), Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, Australian Geomechanics Vol. 42, No 1.

Australian Standard 1289.6.3.2 (1997) Determination of the penetration resistance of a soil - 9kg dynamic cone penetrometer test.

Australian Standard 1726 (1993) Geotechnical site investigations.

AEMC Instruments user manual (2012) Digital Ground Resistance Tester Model 4620 and 4630.

The Tallangatta 1:250,000 Geological Series Sheet SJ 55-3

Look, B.G. (2007) Handbook of Geotechnical Investigation and Design Tables, CRC Press.

NSW Environment & Heritage (eSPADE) NSW soil and land information.

Waltham, T, (1994) Foundations of Engineering Geology, Third Edition, Spon Press.

Attachment A – Figures

7

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 16

Martens & Associates Pty Ltd Environment | Water | Wastewater | Geotechnical | Civil | Management ABN 85 070 240 890 Drawing No: Drawn: AB APPROXIMATE TEST PIT (TP)/ DYNAMIC CONE PENETROMETER (DCP) TESTING LOCATION AND GEOTECHNICAL TESTING LOCATIONS JF Approved Figure 1 IDENTIFIER (SOURCE: Sixmaps) Date: 16.01.15 APPROXIMATE SOIL RESISTIVITY TRANSECTS LOCATION Job No: P1504591 Scale: NA

CALCULATION SHEET

System P5, Form 3 Issued 6/5/06

REFERENCE NO.

Plate 1: Looking upslope to the north

Plate 2: Looking upslope to the north west.

Martens & Associates Pty	ABN 85 070 240 890	Environment Water Wastewater Geotechnical Civil Management						
Drawn:	AB		Drawing No:					
Approved:	JF	OPTUS SITE \$8596, THREDBO SKI RESORT, THREDBO, NSW PLATES	FIGURE 3					
Date:	22.01.15							
Scale:	NA		Job No: P1504591					

-martens-

Plate 3: Looking upslope to the north east.

Plate 4: Looking downslope to the south.

Martens & Associates Pty	ABN 85 070 240 890	Environment Water Wastewater Geotechnical C	Civil Management
Drawn:	АВ		Drawing No:
Approved:	JF	OPTUS SITE S8596, THREDBO SKI RESORT, THREDBO, NSW PLATES	FIGURE 4
Date:	22.01.15		
Scale:	NA		Job No: P1504591

Plate 5: Test pit TP101. Test pit refusal at 2.4m on granite.

Plate 6: Test pit TP102. Test pit refusal at 1.8m on granite.

Martens & Associates Pty	Ltd ABN 85 070 240 890	Environment Water Wastewater Geotechnical Civil Management						
Drawn:	АВ		Drawing No:					
Approved:	JF	OPTUS SITE \$8596, THREDBO SKI RESORT, THREDBO, NSW PLATES	Figure 5					
Date:	22.01.15	12						
Scale:	NA	8	Job No: P1504591					

ATTACHMENT B – Test Pit Logs

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591 JR01 V01 – January 2015 Page 13

8

CL	IEN OJE	т ЕСТ	C	atalys eotec	t On hnic	e al In	vestigati	on	COMMENCED 14/1/15 LOGGED AB			c c	COMPLETED 14/1/15 CHECKED JF/RE					REF Sheet 1	T of 1	'P101	
SIT EQU		NT	0	ptus S	oite S	Excava	i, Thredb	o Ski	Resort, Thredbo NSW	GEOLOGY	Lower Devonian	V R	EGETATIO	N Grass	s 821m A	HD		PROJECT	NO. P	1504591	
EXC	AVAT	ION	DIME	NSIONS	40	0mm w	vide toothed b	ucket X	2-4m depth	NORTHING		A	ASPECT	South	1			SLOPE	5-10)°	
	EX	CA	VAT		ATA		_	-	MAT	ERIAL DAT	A				-	SA	MPLIN	G & TES	TING		_
METHOD	SUPPORT	WATER	MOISTURE	DEPTH (M)			GRAPHIC LOG	CLASSIFICATION	MATERIA SOIL NAME, plastic colour, secondar moisture condition, ROCK NAME, grain streng	L DESCRIPTIC ity or particle char y and minor comp consistency/relativ n size, texture/fabi th, weathering.	DN racteristics, onents, ve density, ric, colour,		CONSISTENCY	DENSITY INDEX	TYPE	DEPTH (M)	A	RES DDITIONAL	ULTS A OBSE	ND RVATIONS	i
E	, Nil	N	м	0.6				CL	Sandy CLAY - Low prootlets,	plasticity, dar trace gravels	k brown, with 3.		F- St		A	0.5	4591/10	1/0.5	SIDUAL		-
E	Nil	N	м	1.0				CL- CI	CLAY - Low to light brown gravels (5-10	o medium pla n, with sand a mm, sub ang	sticity, and gular).		St- VSt		A	1.0	4591/10	11/1.0	SIDOAL		- - - - - - -
			1	ľ			+++++++++++++++++++++++++++++++++++++++						- T					- WE	ATHER	ED ROCK	
Е	NII	N	D	2.0					GRANITE - Inferred white/ red/ light bro	very low stre wn, distinctly	ength, brown/ weathered.	8			A	1.8	4591/10 4591/10	11/1.8			2.0
				3.0					Test pit refusal at 2	2.4m with too	thed bucket.										3.0
EC N X Bi	QUIPM Na ED H Ba	MENT atural xisting	/ ME expo g exca e buck	4.0 4.5 THOD sure vvation cet	SUPP SH S RB R	ORT horing hotcret	WATER N Non N Not Not W Water	e observ measure er level	MOISTURE DRILLING ved D Dry RESISTA ed M Moist L Low W Wet M Mode	3 CONSI NCE VS V Prate F Fi	STENCY DENSI Sty Soft VL V oft , L L rm MD M	TY /ery Loose .oose ledium Der	SAMP a A Au B Bu nnse U Uh	LING & T Iger samp Idisturbed	ESTINC ple e d sampl	B V	p Pocket p Standar S Vane st	enetrometer d penetration ear	C S test S	LASSIFICATI YMBOLS ANI IOLI DESCRIF	4.0 4.5 ION D D PTION
HI S V T E	A Ha Sp C Coi V-E C Tur Exc	and au oade ncrete Bit ngste <i>r</i> avato	uger e Core n Cart or	er bide Bit	NII N	lo supp	oort ∓ Wat	er outflo	Wp Plaslic limit H High w Wl Liquid limit R Refus v	SI Sti sal VSI Ve H Ha F Fri	iff DDD and able	Pense ery Dense	D Di M Ma Ux Tu	sturbed s disture co libe samp	ample ntent le (x mn	D 1) FI W	CP Dynan penetr D Field de /S Water s	nic cone ometer nsity ample	-	Y USCS N Agricultu	iral
(ľ		a	rte Martens & ,	e n Associati	S es Pty. L	EXCAVATIOn to the second secon	JN LO	G TO BE READ IN CONJUN N Suite 201, Phor mail@mart	ARTENS & AS 20 George St, ne: (02) 9476 9 ens.com.au W	SSOCIATES PT Homsby, NSW 999: Fax: (02) 9 EB: http://www.n	Y LTD 2077 Au 476 8767 nartens.c	ustralia 7 com.au	S AND	E	ng	gine Exc	erin avai	g L tior	og - 1	

CL PR	IEN OJE	T ECT	C G	atalyst eotech	One Inical Ir	nvestigat	ion		COMMENCED	14/1/15 AB	COMP	LETED KED	14/1/15 JF/RE			REF Sheet 1	TP10	2
SIT	E	NT	0	ptus Si	te \$8596	6, Thredbo	o Ski Re	sort, Thredbo, NSW	GEOLOGY	Lower Devonian	VEGE	REACE	Grass	23m AL)	PROJECT N	O. P1504591	
EXC	AVAT	ION E	DIME	NSIONS	400mm	wide toothed I	oucket X 1.8	8m depth	NORTHING		ASPEC	CT	South	Lonn AFI		SLOPE	5-10°	
F	EX	CA	VAT	ION D	ATA		-	MAT	ERIAL DAT	ГА					SAMPLI	NG & TES	TING	
МЕТНОD	SUPPORT	WATER	MOISTURE	DEPTH (M)	M DRILLING	RAPHIC LOG	CLASSIFICATION	MATERIA SOIL NAME, plastic colour, secondar moisture condition, ROCK NAME, grai streng	L DESCRIPTION ity or particle char y and minor com consistency/relat n size, texture/fat th, weathering.	DN practeristics, ponents, ive density, pric, colour,	CONSISTENCY		DENSITY INDEX	ТҮРЕ	DEPTH (M)	RESI ADDITIONAL	JLTS AND OBSERVATION	IS
E	Nil	N	м	0.5			CL	Sandy CLAY - Low rootlets,	plasticity, da trace grave	rk brown, with s.	F- SI				-	- TOF	2SOIL	
E	Nil	N	м	1.0			CL- CI	CLAY - Low to med with sand and grave	ium plasticity əls (5-10mm	v, light brown, sub angular).	St- VSt	t				RES	SIDUAL	1.
E	Nil	N	D					GRANITE - Inferred	d very low st	rength brown/						- WE	ATHERED ROCK	
				1.8		+ + + + + + + + } + + + +		White/ red/ light bro	own, distincti	y weathered.				8				
				2.0														2
				 														3
								9 8										
				4.0														50 4
ENX BILS OV T	QUIPI Na E: H Ba A Ha Sp C Cor V-E C Tur	MENT atural xisting ickhoe ind au bade ncrete Bit ngsten	f / ME expos g exca e bucl uger e Core	4.5 THOD Source S avation S kel F Por Dide Bit	SUPPORT SH Shoring SC Shotcre RB Rock B No sup	g WATER g N Nor tete X Not loits ¥ Wa jport √ Wa ▷ Wa	e observed measured ter level ter outflow ter inflow	MOISTURE DRILLIN D Dry RESISTA M Moist L Low W Wet M Mod Wp Plastic limit H High Wi Liquid limit R Refu	G CONS NACE VS V erate F F stal VS V H H F F	ISTENCY DENSI Yery Soft VL V Soft L Lt Tirm MD M Hiff D D Very Stiff VD Ve lard riable	FY ery Loose ose edium Dense ense ry Dense	SAMPLI A Aug B Bulk U Und D Dist M Mois Ux Tub	NG & TE er sample : sample isturbed sa urbed sa slure cont e sample	STING e sample mple ent (x mm)	pp Pocke S Stanc VS Vane DCP Dyr pen FD Field WS Wate	at penetrometer lard penetration shear namic cone etrometer density or sample	CLASSIFICA SYMBOLS A test SOIL DESCI Y USCS N Agricu	ATION AND RIPTION
E	Exc	avato	or .			EXCAVAT	ON LOG	TO BE READ IN CONJUN	ICTION WITH	ACCOMPANYIN	G REPORT I	NOTES	AND A	BBRE	IATIONS			
(1	n	a	rte Martens & A	ns	Ltd , 2015		N Suite 201, Pho mail@mart	MARTENS & A , 20 George Si ne: (02) 9476 S tens.com.au V	SSOCIATES PT t, Hornsby, NSW 9999 Fax: (02) 9 VEB: http://www.m	Y LTD 2077 Australi 476 8767 hartens.com.a	ia au		Er	ngin Ex	eerin cavat	g Log · tion	

9 ATTACHMENT C – DCP 'N' Counts

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 16

Dynamic Cone Penetrometer Test Log Summary

Suite 201, 20 George Street, Homsby, NSW 2159, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

Site		Optus Site \$859	6 Thredho Ski Resor	t. Thredbo, NSW	DCP Group	Reference	P150	4591
•		oprosono obos	o, 11/0000 01/11/0001	.,				
Clie	ent		Catalyst One		Log I	Date	14.0	1.15
Logra	d by		ΔR					
Logge	u by		AD					513
Checke	ed by		JF/ RE					The second se
Comm	ante							
Comm								
				TEST DATA				
		112						
Death Interval								
(m)	DCP101	DCP102						Design
(m)								
0.15	2	2						Ź
0.30	Ž	2						2
0.45	3	2						2
0.60	7	7						7
0.75	7	12						7
0.90	11	22						11
1.05	17	27						17
	10/50mm	10/50mm						
	Bounce	Bounce						اجري ويقارفان
	0	ē						
	1.1m	1.3m						
				·				
							2	
	14							
					· · · · · · · · · · · · · · · · · · ·			
and the second second								
Territoria de la competitiva de la comp								
the second second second								
							10 g	
						0.		
							6	
						-		
						-		
			· · · · · · · · · · · · · · · · · · ·					

10 ATTACHMENT D – AGS (2007) Risk Assessment

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 18

Lan	Landslide Hazard Evaluation - Risk to Life Assessment									
	Melhod bosed on Wolker et al. in AGS Vol 42 No. 1 March 2007 Melhod ST-24 Revised 20.02.08									
		Sui	te 201, 20 George Stree	t, Hornsby, NSW 2007,	Ph: (02) 9476 9999 Fax:	(02) 9476 8767, mail@	martens.com.au, www.mar	tens.com.au		
PROJE	CT DETAILS									
	Project		Optus Site \$859	5. Thredbo Ski Reso	rt. Thredbo, NSW		Ref. No. P15	04591		
	Author		AB	Reviewed	JF/	RE	Created 16.	.01.15		
STEP 1 :	ENTER SITE AND DESIGN DATA						i			
Hazard	Туре	Shallow rol	ational slide]						
Р _(H)	Annual probability of landsäde	0.0001								
			RECURRENCE	DESCE		DESCRIPTOR	LEVEL			
		10-4	10 years	The event is expected t	to occur over the design	ALMOST CERTAIN				
		102	100 wars	in The event will probabi	le ly occur under adverse	LIKELY	в			
		10-3	1000 years	The event could occur u	The design life Inder adverse conditions	POSSIBLE	c			
		10-4	10.000 years	over the o	ur under very adverse	UNLIKELY	D			
		10 ⁶	100.000 years	Circumstances ov The event is concei	ver the design life. Wable but only under	RARE	Ε			
		10.6	1,000,000 years	The event is inconceive	ces over the design life, able or tanciful over the	BARELY CREDIBI F	F			
			1	desig	jn life	START GREDIDLE				
°(5+1)	Probability of spatial impact impacting building location taking into account travel distance and travel direction	0.45					-			
	W₂→	FACTOR	DESCI	RIPTION	UNITS	VALUE				
		W ₁	Likely slic	le/fall width	falwidth m					
	Aider/Fall Anvestigation	W ₂	Width of allotment	investigation area m		29.95				
	~ w -	W3	Width of dweiling /	nvestigation element	m	10	1			
	Legan	Littin	Minimum n	un-out length	m	1				
	<u>k</u> / [Littlex	Maximum r	un-out longth	m	5	1			
	$w_1 \longrightarrow u_2$	L ₂	Length of silotmen	t investigation area	m	40.4				
		L,	Length of dwelling /	investigation element	m	35	1			
	No.2 + Duelino /	Lewin	Probability of runo	ut being 0 - 1 m long	(0 - 1)	0,90				
	Investigation Element	Lewiss	Probability of runo	t being 5 - 5 m long	(0 - 1)	0.10	-			
		WF	Likelihood of across slo	pe strike on risk element	(0 - 1)	0.50				
L		L _{F Min}	for minimum /	un-out distance	(0 - 1)	0 89				
		LF Max	for maximum (nuri-out distance	(0 - 1)	1 00				
	4	L _{F Owner}	risk element r	pe strike (integrated) on un-out distance	(0 - 1)	0,90				
Р (т:s)	Temporal spatial probability given the spatial impact	0.01]							
		FACTOR	DESCI	RIPTION	UNITS	VALUE	1			
		T _±	Percentage of time	penson(s) are on-size	*	5%				
		T ₂	Percentage of dwelling oc	/ element that person(s) cupy	%	10%]			
(p:t)	Vulnerability of the individual (ie., probability of loss of life given the impact)	0.50								
		CASE	DESCI	RIPTION	RANGE IN DATA	RECOMMENDED	COMMENTS	1		
			If struck b	y a rockfall	01 - 07	0.50	May be injured but unlikely	7		
		Person in open space	If buried	by debris	08-10	1 00	Death by asphysia almost	đ		
			lf not	buried	01-05	0 10	High chance of survival	1		
			If vehicle is b	uried / crushed	09-10	1 00	Death is almost certain	2		
		Person in a vehicle	If the vehicle is	s damaged only	00-03	0 30	High chance of survival	1		
			If the build	ng collapses	09-10	1 00	Dealth is almost certain			
		Persons in building	If the building is inunda	ated with debris and the is buried	08-10	1.00	Death is highly likely	1		
			If the debris strike	es the building only	00-01	0.05	Very high chance of surviv	al.		
TEP 2 ·	RISK EVALUATION		1				1 570-C			
(LaL)	Risk (annual probability of loss of life of an individual)	1.13E-07								
let. A.	5000mont			lass of the state		al autorite a	u develo			
KISK AS:	Sk Assessment Acceptable risk for loss of life for the person(s). Risk level suitable for new developments.									

Landslide Hazard Evaluation - Risk to Life Assessment Method based on Walker et al. in AGS Vol 42 No. 1 March 2007 Method ST-24 Revised 20 02 08									
201	CT DETAILS	Sult	te 201, 20 George Stree	et, Hornsby, NSW 2007, I	Ph; (02) 9478 9999 Fax:	(02) 9476 8767, mail@n	nartens.com.au, www.mar	tens.co	
ROJI		r	525 (1316) (1	_	
	Project	,	Optus Site S859	6, Thredbo Ski Reso	rt, Thredbo, NSW	PF	Ref. No. P15	04591	
				1 Keviewed	517			01.10	
EP 1	ENTER SITE AND DESIGN DATA								
azaro	і Туре	Deep rota	tional silde]					
	Ans al ambability of least-lists	0.005	1						
(H)		0.005]						
		INDICATIVE VALUE	RECURRENCE INTERVAL	DESCR	IPTION	DESCRIPTOR	LEVEL		
		10 ⁻¹	10 years	The event is expected t	o cocur over the design s.	ALMOST CERTAIN	A		
		10 ⁻²	100 years	The event will probabl conditions over	y occur under adverse the design life	LIKELY	в		
		10 ⁻³	1000 years	The event could occur u over the c	nder adverse conditions lesign life	POSSIBLE	c		
		104	10,000 years	The enent might occurstances of	er under very adverse wir the design life	UNLIKELY	D		
		10 ⁻⁵	100,000 years	The event is concer exceptional circumstan	vable but only under ces over the design life.	RARE	E		
		10-8	1,000,000 years	The event is inconceive desig	able or fanciful over the In life	BARELY CREDIBLE	F		
(S 11)	Probability of spatial impact impacting building location taking into account travel distance and travel direction	1.00							
		FACTOR	DESC	RIPTION	LINITS	VALUE	1		
Ī	W ₂ +	W.	Likely dir	ia/fall wirith		F E			
	Allotment /	W	Width of ellotrees	/ investigation area		29.95			
	onnuevrau Investigation ↑ Anea	102	1054th of dupling /	intention on mont		10			
	- w,	442	Vidur of dwearing /		m	10	-		
	i i i i i i i i i i i i i i i i i i i	L- ildin	Mainourn o		m		-		
	N. A have	- illes	Mabamum r		m	5	-		
	w ₃ →	L ₂	Length of allothen	it / investigation area	m	40.4			
	$X \neq [1]$	L3	Length of dwelling /	investigation element	m	35			
	Dwelling /	Lesin	Probability of runo	ut being 0 - 1 m long	(0 - 1)	0.10			
	Investigation Element	LPhiles	Probability of runo	ut being 5 - 5 m long		0.90			
		VV _F	Likelihood of downsion	pe strike on risk element	(0+1)	0.60	-		
Į] +	Le Man	for minimum i	run-out distance pe strike on risk element	(0 - 1)	0.89	-		
		LF Max	for maximum	run-out distance pe strike (integrated) on	(0 - 1)	1 00			
_		LF Casagon	nisk element r	run-out distance	(0 - 1)	0,99]		
T:S)	Temporal spatial probability given the spatial impact	0.01							
		FACTOR	DESC	RIPTION	UNITS	VALUE]		
		Т	Percentage of time	person(s) are on-site		5%			
		T ₂	Percentage of dwelling oc	/ element that person(s) cupy	*	10%			
D:T)	Vulnerability of the individual (ie., probability of loss of life given the impact)	0.01							
		CASE	DESC	RIPTION	RANGE IN DATA	RECOMMENDED	COMMENTS	1	
			lf struck t	by a rockfall	01-07	0.50	May be injured but unlikely	7	
		Person in open space	If buried	l by debris	08-10	1.00	Death by asphysia almost	1	
			lí net	tburied	01-05	0.10	Certain High chance of survival	1	
			If vehicle is b	uried / crushed	0.9-1.0	1.00	Death is almost certain	-	
		Person in a vehicle	If the unbide it	e damaged only	00-03	0.30	High chance of survival		
			If the build	ing collapses	0.9-10	1.00	Dealth is almost cartain		
		Persons in building	If the building is inund	ated with debris and the	08.10	1.00	Death is highly likely	-	
		. crosse at outsiding	person If the debris strik	is buried es the building only	0.0-0.1	0.05	Very high chance of surviv	-	
EP O	DISK EVALUATION					L		4	
ar 2		r	1						
(LaL)	Risk (annual probability of loss of life of an individual)	2.50E-07							
isk A	ssessment	A	cceptable risk for	loss of life for the	person(s). Risk lev	vel suitable for nev	w developments.		
			,						

Lan	dslide Hazard Evaluation - Method based on Walker et al. in AGS Vol 42 No. 1 Ma Method ST-24 Revised 20 02 08	Risk to Life	Assessme	ent		(m	arten	s
PROIS	CT DETAILS	Suite	201. 20 George Stree	t. Komsby. NSW 2007. I	Ph: (02) 9476 9999 Fax:	(02) 9476 8767. mail@r	nartens.com.au. www.marten	s.com.au
PROJE	CIDETAILS	r	an interio				1	
	Project		Optus Site S859/	6, Thredbo Ski Reso	rt, Thredbo, NSW	RE	Created 16.01	.15
IEF I	ENTER SHE AND DESIGN DATA							
lazard	Туре	Translati	onal Slide]				
(H)	Annual probability of landslide	0.0001						
			RECURRENCE	DESCR		DESCRIPTOR	LEVEL	
		10-1	10 years	The event is expected t	o occur over the design	ALMOST CERTAIN		
		10-2	100 years	The event will probabl	e. y occur under adverse	LIKELY	в	
		10-3	1000 value	conditions over The event could occur u	the design life. Inder adverse conditions	POSSIBIE	c	
		10	10,000 years	over the c	lesign life Ir under very adverse	UNLIKELY		
		10	100.000 years	circumstances of The event is concei	ver the design life. vable but only under	DADE	F	
		10-	1 000 000	exceptional circumstan The event is inconceive	ces over the design life able or tanciful over the	RADELY ODCOUDUC	E	
		10*	1,000,000 years	desig	n life	DARELT GREDIBLE		
H)	Probability of spatial impact impacting building location taking into account travel distance and travel direction	0.45						
_		EACTOR	DECO	RIPTION	LINITE	VALUE	1	
i i		FACTOR	DESCI		UNITS	VALUE	-	
	Allotment /	144	Likery erc		m	3		
	Side/r-all Investigation	¥¥2		C/ Investigation area	m	29.95	-	
	- w	¥¥3	vviatn of aweiling / i	nvespgation element	m	10		
	l lipon	Litten	Minimum n	un-out length	m	1	-	
	λ Alima II	Litter	Maximum r	un-out length	m	5	-	
	\rightarrow \downarrow	L ₂	Length of allotmen	t / investigation area	m	40.4	-	
		Lı	Length of dwelling /	investigation element	m	35		
	Dwelling /	Lewin	Probability of runo	Probability of runout being 0 - 1 m long Probability of runout being 5 - 5 m long		0.90		
	Investigation Element	LPME	Probability of runo			0.10		
		WF	Likelihood of across sko	pe strike on risk element	(0 - 1)	0.50		
L	I	Le un	for minimum r	run-out distance	(0 - 1)	0.89	-	
		Leuna	for maximum	run-out distance	(0 - 1)	1.00	-	
		LF Design	risk element r	run-out distance	(0 - 1)	0.90		
5)	Temporal spatial probability given the spatial impact	0.01						
		FACTOR	DESC	RIPTION	UNITS	VALUE		
		T ₁	Percentage of time	person(s) are on-site	%	5%		
	2.43	T2	Percentage of dwelling oc	/ element that person(a) cupy	*	10%		
ŋ	Vulnerability of the individual (ie. probability of loss of life given the impact)	0.50					¥7	
		CASE	DESC	RIPTION	RANGE IN DATA	RECOMMENDED	COMMENTS	
			lf struck t	oy e rockfall	01-07	0.50	May be injured but unlikely to cause death	
		Person In open space	If buried	l by debris	0.8-10	1.00	Death by asphyxia almost certain	
			If not	t buried	01-05	0.10	High chance of survival	
			If vehicle is b	uried / crushed	09-10	1 00	Death is almost certain	
		Person in a vehicle	If the vehicle i	s damaged only	00-03	0 30	High chance of survival	
			If the build	ing colla paas	09-10	1 00	Dealth is almost certain	
		Persons in building	If the building is mund	ated with debris and the is buried	08-10	1.00	Death is highly likely	
			If the debris strik	es the building only	0.0-0.1	0.05	Very high chance of survival	
EP 2 :	RISK EVALUATION					ł		
LoL)	Risk (annual probability of loss of life of an individual)	1.13E-07						
lisk A	sessment	Δ	cceptable risk for	loss of life for the	person(s). Risk le	vel suitable for new	w developments.	
2001.00				to be of the for the				

Landslide Hazard Evaluation - Risk to Life Assessment									
Method based on Walker et al. in AGS Vol 42 No. 1 March 2007 Method \$1-24 Revised 20.02.08									
		Suite	201. 20 George Stree	t. Hornsby, NSW 2007. I	Ph: (02) 9478 9999 Fax:	(02) 9478 8787, mail@	martens.com.au. ww	w.martens.com.	
ROJE	CT DETAILS								
	Project		Optus Site \$8596	i, Thredbo Ski Reso	rt, Thredbo, NSW		Ref. No.	P1504591	
	Author	<i>I</i>	AB	JF/	RE	Created	16.01.15		
EP 1 :	ENTER SITE AND DESIGN DATA								
_				1					
azard	Туре	Soll	Creep						
		_							
4)	Annual probability of landslide	0.01							
			RECURRENCE	DESCR		DESCRIPTOR	LEVEL		
		10 ⁻¹	INTERVAL	The event is expected to	o occur over the design	AL MOST CERTAIN			
		10 ⁻²	100 years	If The event will probably	e. y occur under adverse	LIKELY	в		
		10-3	1000 years	The event could occur u	the design life. Inder adverse conditions	POSSIBLE	c		
		10-4	10,000 years	over the c The enerit might occu	lesign life ir under very edverae	UNLIKELY	D		
		10 [¢]	100,000 years	The event is concer	vable but only under	RARE	E		
		10-6	1,000,000 years	The event is inconceive	able or fanoful over the	BARELY CREDIBLE	F		
_	Probability of epotial impact impactions building local in the		1	uday					
H)	Probability of spatial impact, impacting building location taking into account travel distance and travel direction	0.10							
	w	FACTOR	DESCR		UNITS	VALUE	1		
Γ	1	W ₁	Likely slid	e/fall width	m	б			
	Allotment / Side/Fall Investigation	W ₂	Width of allotment	/ investigation area	m	29.95	1		
	Area	W ₃	Width of dwelling / investigation element		m	10	1		
	- W,	Line	Minimum n	n-out length	m	1	1		
		L _{1bles}	Maximum n	un-out length	m	5	1		
	$ \downarrow \downarrow$	L ₂	Length of allotmen	t / investigation area	m	40.4			
		La	Length of dwelling /	investigation element	m	38			
		Lnan	Probability of runout being 0 - 1 m long		(0 - 1)	0.90			
	Dweiing / L _a Investigation Element	Louis	Probability of runos	t being 1 - 5 m long	(0 - 1)	0,10			
		WF	Likelihood of across slo	pe strike on risik element	(0 - 1)	0.50	-		
L		LFMm	for minimum r	e strike on nek element un-out distance	(0 - 1)	0.89			
		Le Mar	for maximum r	e strike on risk element un-out distance	(0 - 1)	1.00	-		
		L _{F Delign}	risk element r	un-out distance	(0 - 1)	0.90]		
5)	Temporal spatial probability given the spatial impact	0.01							
		FACTOR	DESC	RIPTION	UNITS	VALUE	1		
		T ₁	Percentage of time	person(s) are on-site	%	5%]		
		T ₂	Percentage of dwelling oc	/ element that person(s) supy	*	10%			
m	Vulnemability of the individual (ie. probability of loss of life given the impact)	0.100							
		CASE	DESCI	RIPTION	RANGE IN DATA	RECOMMENDED	COMMENTS		
			lf struck b	y a rockfall	0.1 +0.7	0.50	May be injured but	uniikely h	
	H	Person in open space	If buried	by debris	08-10	1.00	Death by asphysia cartain	elmost	
			lf nøt	buried	01-05	0.10	High chance of su	rvival	
		Remarks and the	If vehicle a b	uned / crushed	09-10	1.00	Death is almost c	ertain	
		Person In a vehicle	If the vehicle is	a damaged only	00-03	0.30	High chance of su	rvival	
			If the buildi	ng collapses	09-10	1,00	Dealth is almost o	ertain	
		Persons in building	If the building is inunda person	ited with debris and the is buried	08-10	1.00	Death is highly i	kely	
			If the debris strike	as the building only	00-01	0.05	Very high chance of	survival	
P 2 :	RISK EVALUATION					_			
aL)	Risk (annual probability of loss of life of an individual)	5.00E-07							
k As	sessment	A	cceptable risk for	loss of life for the p	erson(s). Risk lev	rei sultable for nev	w developments.		

Melhod based on Walker ef al. in AGS Vol 42 No. 1 Mar Melhod 51-24 Revised 20.02.08	ch 2007				Cm	arten
	Suite	201. 20 George Stree	t. Hornsby, NSW 2007.	Ph; (02) 9476 9999 Fax:	(92) 9476 8767, malim	martena.com.au, www.marten
PROJECT DETAILS						
Project		Optus Site \$859	s, Thredbo Ski Resc	rt, Thredbo, NSW		Ref. No. P1504
Author		AB	Reviewed	JF/	RE	Creoted 16.01.
TEP 1 : ENTER SITE AND DESIGN DATA						
			1			
lazard Type	Bou	Iders				
(H) Arinaal probability of landalide	0.0001					
		DECURDENCE				
	INDICATIVE VALUE	INTERVAL	DESCR	IPTION	DESCRIPTOR	LEVEL
	10'1	10 years	The event is expected to	e e	ALMOST CERTAIN	A
	10-2	100 years	conditions over	the design life.	LIKELY	B
	10-3	1000 years	over the o	lesign life	POSSIBLE	c
	10-4	10,000 years	circumstances of The event is concel	wr the design life.	UNLIKELY	D
	10-5	100,000 years	exceptional circumstan	ces over the design life	RARE	E
	10*	1,000,000 years	desig	n life	BARELY CREDIBLE	J F J
(51) Probability of spatial impact impacting building location taking (51) into account travel distance and travel direction	0.90					
		1			0.	1
• W_2	FACTOR	DESCI	RIPTION	UNITS	VALUE	-
Aliotrpent /	W,	Likely slic	ie/fall width	m	6	-
Side/Fall Investigation Area	W ₂	Width of allotment	/ Investigation area	m	45	-
-w	Wa	Width of dwelling / i	nvestigation element	m	35	-
Lenne Le	Little	Minimum n	in-out length	m	5	-
	Libber	Maximum r	un-out length	m	10	-
w ₃	L ₂	Length of ellotmen	i / investigation area	m	50	-
	L3	Deshability of a may	theirs 0. 5 m lans	m (n. t)	35	-
Dwelling / La	-Pilin	Probability of support	Lbeing 0 - 311 long	(0 - 1) (0 - 1) (0 - 1) (0 - 1)	0.50	-
Element	We	Likelihood of ecross slo	pe strike on risk element		1.00	-
	Leun	Likelihood of downslop	e strike on risk element.		0.80	-
• /•	يور با	for minimum r Likelihood of downslop	un-out distance e strike on risk element	(0 - 1)	1.00	-
-	L _{F Destern}	Likelihood of downsion	un-out distance e strike (integrated) on	(0 - 1)	0.90	-
		nsk element r	un-out distance			
(T:5) Temporal spatial probability given the spatial impact	0.01					
1	FACTOR	DESCI		UNITS	VALUE	1
-	T	Percentage of time	person(s) are on-site	UNITS	5NL	-
	T2	Percentage of dwelling	/ element that person(s)	m	10%	-
L		00	λφη'			1
Unrerability of the individual (ie. probability of loss of life given the impact)	1.00					
Г	CAPE	DECO	IPTION	DANCE NOT	RECOMMENDED	COMMENTS
-	UABE	if etnoir 6	v a rockfall	01 -07	VALUE	May be injured but unlikely
	Person in open snace	If buried	by debris	08-10	1.00	to cause death Death by esphysia almost
	open speed	if our real	buried	01-05	0.10	High chance of survival
-		if vehicle is h	iried / crushed	09-10	1.00	Death is almost certain
	Person in a vehicle	If the vehicle is	damaged only	00-03	0.30	High chance of survival
-		If the building	ng collapses	09-10	1.00	Dealth is almost certain
	Persons in building	If the building is inunda	hed with debris and the	08-10	1.00	Death is highly likely
		person If the debris strike	is buried is the building only	0.0 - 0.1	0.05	Very high chance of survival
IEP 2 : RISK EVALUATION						
		1				
(LoL) Risk (annual probability of loss of life of an individual)	4.50E-07					

11 ATTACHMENT E – Example of Good Hill Slope **Engineering Practices**

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 24

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

HILLSIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES OF GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.

Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

EXAMPLES OF **POOR** HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

•	GeoGuide LR1 GeoGuide LR2	- Introduction - Landslides	•	GeoGuide LR6 - Retaining Walls GeoGuide LR7 - Landslide Risk
•	GeoGuide LR3	- Landslides in Soil		GeoGuide LR9 - Effluent & Surface Water Disposal
•	GeoGuide LR4	- Landslides in Rock		GeoGuide LR10 - Coastal Landslides
	GeoGuide LR5	- Water & Drainage	•	GeoGuide LR11 - Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

12 ATTACHMENT F – Form 1

Geotechnical Investigation: Optus Site \$8596, Thredbo Ski Resort, Thredbo, NSW . P1504591JR01V01 – January 2015 Page 25

Geotechnical Policy – Kosciuszko Alpine Resorts Form 1 – Declaration and certification made by geotechnical engineer or engineering geologist in a geotechnical report.

Date received: ___/__/

DA no: _____

To be submitted with a development application

You can use Form 1 to verify that the author of a geotechnical report is a geotechnical engineer or engineering geologist as defined by DIPNR Geotechnical Policy. Alternatively, where a geotechnical report has been prepared by a professional person not recognised by DIPNR Geotechnical Policy, then form 1 may be used as technical verification of the geotechnical report if signed by a geotechnical engineer or engineering geologist as defined by the DIPNR Geotechnical Policy.

Please contact the Alpine Resorts Assessments Team in Jindabyne for further information. Phone 02 6456 1733,

To complete this form, please place a cross In the boxes I and fill out the white sections.

Declaration made by geotechnical engineer or en	ngineering	geologist
as part of a geotechnical report		

2

Mr 🕅 Ms 🗌 Mrs 🗌 Dr 🗌 Othe	וד Family name
OF Company/organisation	LTNI
MARTONS & ASSOCIATES P	07U M
on this the 16th day of 10th	100mg 20 <u>15</u> ,
 certify that I am a geotechnical engineer or eand I; (tick appropriate box) prepared the geotechnical report reference DIPNR Geotechnical Policy – Kosciusz am wiling to technically verify that the Geotechnical verify that verify that the Geotechnical verify that verify that the Geotechnical verify that verify that	engineering geologist as defined by the "Policy" ced below in accordance with the AGS 2000 and ko Alpine Resorts.
prepared in accordance the AGS 2000- Resorts. 2007	and the Geotechnical Policy – Kosciuszko Alpine
Geotechnical Report Details	
Report Title	ALL LITO CARANT IN CHI D.
rootonnical Innethologici. Oh	The JR JOL ME, INTEALO LAI KEEDY +
Author Adam biliji	Dated Threadon's
Author Author Adam Budiji DA Site Address	Dated Threato Iti Kestort, Dated Threatophis January Jets
Author Author DA Site Address Threetoo Sti Resort, Alph	Dated Threadon's Dated Threadon's Janvory Jets

For m 1 – Declaration and certification made by geotechnical engineer or engineering geologist in a geotechnical report - DIPNR Geotechnical Policy – Kosciuszko Alpine Resorts 1 / 2

I am aware that the Geotechnical Report I have either prepared or am technically verifying, (referenced above) is to be submitted in support of a development application for the proposed development site (referenced above), and it's findings will be relied upon by the Consent Authority in determining the development application.

3. Checklist of essential requirements to be contained in a geotechnical risk assessment report to be submitted with a development application

The following checklist covers the minimum requirements to be addressed in a Geotechnical Risk Management Report. This checklist is to accompany the report.

Please tick appropriate box

Risk assessment of all identifiable geotechnical hazards in accordance with AGS.2000, as per 6.1 (a) of the policy.

Site plans with key hazards identified and other information as per 6.1 (b)

Details of site investigation and inspections as per 6.1 (c)

Photographs and/or drawings of the site as per 6.1 (d)

- Presentation of geotechnical model as per 6.1 (e)
- A specific conclusion as to whether the site is suitable for the development proposed on the above site, if applicable, subject to the following conditions;
 - Conditions to be provided to establish design parameters,
 - Conditions to be incorporated into the detailed design to be submitted for the construction certificate,
 - Conditions applying to the construction phase,

Conditions relating to ongoing management of the site/structure.

4. Signatures

₫

Ø

D

Signature		
()-	2	
02		
Name		
110 01	C	

	1061171
Date	

5. Contact details

Alpine Resorts Assessments team Snowy River Avenue PO Box 36 JINDABYNE 2627 t: 02 6456 1733 f: 02 6456 1736 e: <u>Subheresorts assessments Galionano waroway</u>

For m 1 – Declaration and certification made by geotechnical engineer or engineering geologist in a geotechnical report - DIPNR Geotechnical Policy – Kosciuszko Alpine Resorts 2 / 2

13 ATTACHMENT G – Notes Relating To This Report

Geotechnical Investigation: Optus Site S8596, Thredbo Ski Resort, Thredbo, NSW P1504591JR01V01 – January 2015 Page 28

Information

Important Information About Your Report

Subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Martens to help you interpret and understand the limitations of your report. Not all of course, are necessarily relevant to all reports, but are included as general reference.

Engineering Reports - Limitations

Geotechnical reports are based on information gained from limited sub-surface site testing and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely.

Engineering Reports – Project Specific Criteria

Engineering reports are prepared by qualified personnel and are based on the information obtained, on current engineering standards of interpretation and analysis, and on the basis of your unique project specific requirements as understood by Martens. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the Client.

Where the report has been prepared for a specific design proposal (eg. a three storey building), the information and interpretation may not be relative if the design proposal is changed (eg. to a twenty storey building). Your report should not be relied upon if there are changes to the project without first asking Martens to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Martens will not accept responsibility for problems that may occur due to design changes if they are not consulted.

Engineering Reports – Recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption often cannot be substantiated until project implementation has commenced and therefore your site investigation report recommendations should only be regarded as preliminary.

Only Martens, who prepared the report, are fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Martens cannot be held responsible for such misinterpretation.

Engineering Reports – Use For Tendering Purposes

Where information obtained from this investigation is provided for tendering purposes, Martens recommend that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. Attention is drawn to the document 'Guidelines for the Provision of Geotechnical Information in Tender Documents', published by the Institution of Engineers, Australia.

The Company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Engineering Reports – Data

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, drawings etc are customarily included in a Martens report and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These data should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Engineering Reports – Other Projects

To avoid misuse of the information contained in your report it is recommended that you confer with Martens before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Subsurface Conditions - General

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical aspects, relevant standards and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions the potential for will depend partly on test point (eg. excavation or borehole) spacing and sampling frequency which are often limited by project imposed budgetary constraints.
- Changes in guidelines, standards and policy or interpretation of guidelines, standards and

Cmartens consulting engineers

policy by statutory authorities

- The actions of contractors responding to commercial pressures.
- Actual conditions differing somewhat from those inferred to exist, because no professional, no matter how qualified, can reveal precisely what is hidden by earth, rock and time.

The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions

If these conditions occur, the Company will be pleased to assist with investigation or advice to resolve the matter.

Subsurface Conditions - Changes

Natural processes and the activity of man create subsurface conditions. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Reports are based on conditions which existed at the time of the subsurface exploration.

Decisions should not be based on a report whose adequacy may have been affected by time. If an extended period of time has elapsed since the report was prepared, consult Martens to be advised how time may have impacted on the project.

Subsurface Conditions - Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those that were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved at the time when conditions are exposed, rather than at some later stage well after the event.

Report Use By Other Design Professionals

To avoid potentially costly misinterpretations when other design professionals develop their plans based on a report, retain Martens to work with other project professionals who are affected by the report. This may involve Martens explaining the report design implications and then reviewing plans and specifications produced to see how they have incorporated the report findings.

Subsurface Conditions - Geoenvironmental Issues

Your report generally does not relate to any findings, conclusions, or recommendations about the potential for hazardous or contaminated materials existing at the site unless specifically required to do so as part of the Company's proposal for works.

Specific sampling guidelines and specialist equipment, techniques and personnel are typically used to perform geoenvironmental or site contamination assessments. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Martens for information relating to such matters.

Responsibility

Geotechnical reporting relies on interpretation of factual information based on professional judgment and opinion and has an inherent level of uncertainty attached to it and is typically far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded.

To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Martens to other parties but are included to identify where Martens' responsibilities begin and end. Their use is intended to help all parties involved to recognize their individual responsibilities. Read all documents from Martens closely and do not hesitate to ask any questions you may have.

Site Inspections

Martens will always be pleased to provide engineering inspection services for aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site. Martens is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction.

Soil Data Explanation of Terms (1 of 3)

Definitions

In engineering terms, soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material does not exhibit any visible rock properties and can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726 and the S.A.A Site Investigation Code. In general, descriptions cover the following properties - strength or density, colour, structure, soil or rock type and inclusions.

Particle Size

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (eg. sandy clay). Unless otherwise stated, particle size is described in accordance with the following table.

Division Subdivision		Size	
BOULDERS		>200 mm	
		60 to 200 mm	
	Coarse	20 to 60 mm	
GRAVEL	Medium	6 to 20 mm	
	Fine	2 to 6 mm	
	Coarse	0.6 to 2.0 mm	
SAND	Medium	0.2 to 0.6 mm	
	Fine	0.075 to 0.2 mm	
SILT		0.002 to 0.075 mm	
CLAY		< 0.002 mm	

Plasticity Properties

Plasticity properties can be assessed either in the field by tactile properties, or by laboratory procedures.

Moisture Condition

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and damp and is darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

Consistency of Cohesive Soils

Cohesive soils refer to predominantly clay materials.

Term	Cu (kPa)	Apprx SPT "N"	Field Guide
Very Soft	<12	2	A finger can be pushed well into the soil with little effort. Sample extrudes between fingers when squeezed in fist.
Soft	12 - 25	2 to 4	A finger can be pushed into the soil to about 25mm depth. Easily moulded in fingers
Firm	25 - 50	4-8	The soil can be indented about 5mm with the thumb, but not penetrated. Can be moulded by strong pressure in the figures.
Stiff	50 - 100	8 – 15	The surface of the soil can be indented with the thumb, but not penetrated. Cannot be moulded by fingers.
Very Stiff	100 - 200	15 30	The surface of the soil can be marked, but not indented with thumb pressure. Difficult to cut with a knife. Thumbnail can readily indent.
Hard	> 200	> 30	The surface of the soil can be morked only with the thumbnail. Brittle. Tends to break into fragments.
Friable	-		Crumbles or powders when scraped by thumbnail

Density of Granular Soils

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration test (SPT) or Dutch cone penetrometer tests (CPT) as below:

Relative Density	%	SPT 'N' Value (blows/300mm)	CPT Cone Value (qc Mpa)
Very loose	< 15	< 5	< 2
Loose	15 – 35	5 - 10	2 -5
Medium dense	35 – 65	10 - 30	5 - 15
Dense	65- 85	30 - 50	15 - 25
Very dense	> 85	> 50	> 25

Minor Components

Minor components in soils may be present and readily detectable, but have little bearing on general geotechnical classification. Terms include:

Term	Assessment	Proportion of Minor component In:
Trans of	Presence just detectable by feel or eye, but soil properties	Coarse grained soils: < 5 %
Iroce of	little or no different to general properties of primary component.	Fine grained soils: < 15 %
With come	Presence easily detectable by feel or eye, soil properties little	Coarse grained soils: 5 – 12 %
with some	different to general properties of primary component.	Fine grained soils: 15 – 30 %

Soil Data Explanation of Terms (2 of 3)

Soil Agricultural Classification Scheme

In some situations, such as where soils are to be used for effluent disposal purposes, soils are often more appropriately classified in terms of traditional agricultural classification schemes. Where a Martens report provides agricultural classifications, these are undertaken in accordance with descriptions by Northcote, K.H. (1979) The factual key for the recognition of Australian Soils, Rellim Technical Publications, NSW, p 26 - 28.

Symbol	Fleid Texture Grade	Behaviour of moist bolus	Ribbon length	Clay content (%)
S	Sand	Coherence nil to very slight; cannot be moulded; single grains adhere to fingers	0 mm	< 5
LS	Loamy sand	Slight coherence; discolours fingers with dark organic stain	6.35 mm	5
CLS	Clayey sand	Slight coherence; sticky when wet; many sand grains stick to fingers; discolours fingers with clay stain	6.35mm - 1.3cm	5 - 10
SL	Sandy loam	Bolus just coherent but very sandy to touch; dominant sand grains are of medium size and are readily visible	1.3 - 2.5	10 - 15
FSL	Fine sandy loam	Bolus coherent; fine sand can be felt and heard	1.3 - 2.5	10 - 20
\$CL:	Light sandy clay loam	Bolus strongly coherent but sandy to touch, sand grains dominantly medium size and easily visible	2.0	15 - 20
L	Loam	Bolus coherent and rather spongy; smooth feel when manipulated but no obvious sandiness or silkiness; may be somewhat greasy to the touch if much organic matter present	2.5	25
Lfsy	Loam, fine sandy	Bolus coherent and slightly spongy; fine sand can be felt and heard when manipulated	2.5	25
SiL	Silt Ioam	Coherent bolus, very smooth to silky when manipulated	2.5	25 + > 25 silt
SCL	Sandy clay loam	Strongly coherent bolus sandy to touch; medium size sand grains visible in a finer matrix	2.5 - 3.8	20 - 30
CL	Clay loam	Coherent plastic bolus; smooth to manipulate	3.8 - 5.0	30 - 35
SiCL	Silty clay loam	Coherent smooth bolus; plastic and silky to touch	3.8 - 5.0	30- 35 + > 25 silt
FSCL	Fine sandy clay loam	Coherent bolus; fine sand can be felt and heard	3.8 - 5.0	30 - 35
sc	Sandy clay	Plastic bolus; fine to medium sized sands can be seen, felt or heard in a clayey matrix	5.0 - 7.5	35 - 40
SiC	Silty clay	Plastic bolus; smooth and silky	5.0 - 7=5	35 - 40 + > 25 silt
LC	Light clay	Plastic bolus; smooth to touch; slight resistance to shearing	5.0 - 7.5	35 - 40
LMC	Light medium clay	Plastic bolus; smooth to touch, slightly greater resistance to shearing than LC	7.5	40 - 45
мс	Medium clay	Smooth plastic bolus, handles like plasticine and can be moulded into rods without fracture, some resistance to shearing	> 7.5	45 - 55
НС	Heavy clay	Smooth plastic bolus; handles like stiff plasticine; can be moulded into rods without fracture; firm resistance to shearing	> 7.5	> 50

martens consulting engineers

Soil Data Explanation of Terms (3 of 3)

Symbols for Soil and Rock

Unified Soil Classification Scheme (USCS)

	FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 63 mm and basing fractions on estimated mass) USCS Primary Name							Primary Name					
0.075	(iction is	AN /ELS or no	ري ۷	Vide range in grain siz	e and substantial amounts of all intermediate particle sizes.	GW	Gravel					
ger than		VELS coarse fro 2.0 mm	CLE GRA (Little	fine	Predominantly one	size or a range of sizes with more intermediate sizes missing	GP	Gravel					
DILS mm is lar		GRA) an half of arger thar	VELS FINES ciable		Non-plastic fine	es (for identification procedures see ML below)	GМ	Silty Gravel					
AINED SC than 63 1 m	aked ey	More th	GRA' WITH I Appre	fine	Plastic fines	(for identification procedures see CL below)	GC	Clayey Gravel					
.RSE GR, rial less mi	to the n	ction is	NN DS vr no	\$	Wide range in grair	sizes and substantial amounts of intermediate sizes missing.	sw	Sand					
cOA of mate	le visible	UDS coarse fra in 2.0 mm	CLE/ SANI (Little o	tine	Predominantly one size or a range of sizes with some intermediate sizes missing		SP	Sand					
han 50 7	le is about the smallest particl	SAN SAN an half of maller tho	ES Es ciable	or of	Non-plastic fine	es (for identification procedures see ML below)	SM	Silty Sand					
More 1		More than s		SANDS FIN (Appre	Z i i i i i i i i i i i i i i i i i i i		(for identification procedures see CL below)	sc	Clayey Sand				
			IDENTIFICATION PROCEDURES ON FRACTIONS < 0.2 MM										
3 mm is		DRY STRENG (Crushing Characteristi	TH DIL/ cs}	ATANCY	TOUGHNESS	DESCRIPTION	USCS	Primary Name					
LS : than 6 mm	n partic	None to Lo		uick to Slow	None	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	ML	Silt					
ED SOI rial less 0.075 r	(A 0.075 mm	(A 0.075 mm	(A 0.075 mm	Medium t High	0 N	lone	Medium	Inorganic clays of low to medium plasticity, gravely clays, sandy clays, silty clays, lean clays	CL	Clay			
GRAIN of mate er than				(A 0.0	(A 0.0	(A 0.0	Low to Medium	Slow	r to Very Slow	Low	Organic slits and organic silty clays of low plasticity	OL	Organic Silt
FINE 3n 50 % c small(Low to Medium	Slow	to Very Slow	Low to Medium	Inorganic sills, micaceous or diatomaceous fine sandy or silty soils, elastic silts	мн	Silt		
ore the		High	٨	lone	High	Inorganic clays of high plasticity, fat clays	СН	Clay					
ž		Medium t High	0	lone	Low to Medium	Organic clays of medium to high plasticity	ОН	Organic Silt					
HIGHLY ORGANI SOILS	, c	Rec	adily identif	ied by co	olour, odour, spong	gy feel and frequently by fibrous texture	Pt	Peat					
Low Plastic	Low Plasticity – Liquid Limit W _L < 35 % Medium Plasticity – Liquid limit W _L 35 to 60 % High Plasticity - Liquid limit W _L > 60 %												

martens consulting engineers

Rock Data Explanation of Terms (1 of 2)

Definitions

Descriptive terms used for Rock by Martens are given below and include rock substance, rock defects and rock mass.

Rock Substance	In geotechnical engineering terms, rock substance is any naturally occurring aggregate of minerals and organic matter which cannot, unless extremely weathered, be disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Rock substance is effectively homogeneous and may be isotropic or anisotropic.
Rock Defect	Discontinuity or break in the continuity of a substance or substances.
Rock Mass	Any body of material which is not effectively homogeneous. It can consist of two or more substances without defects, or one or more substances with one or more defects.

Degree of Weathering

Rock weathering is defined as the degree in rock structure and grain property decline and can be readily determined in the field.

Term	Symbol	Definition
Residual Soil	Rs	Soil derived from the weathering of rock. The mass structure and substance fabric are no longer evident. There is a large change in volume but the soil has not been significantly transported.
Extremely weathered	EW	Rock substance affected by weathering to the extent that the rock exhibits soil properties - ie. it can be remoulded and can be classified according to the Unified Classification System, but the texture of the original rock is still evident.
Highly weathered	нw	Rock substance affected by weathering to the extent that limonite staining or bleaching affects the whole of the rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decrease compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable.
Moderately weathered	MW	Rock substance affected by weathering to the extent that staining extends throughout the whole of the rock substance and the original colour of the fresh rock is no longer recognisable.
Slightly weathered	sw	Rock substance affected by weathering to the extent that partial staining or discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is recognisable.
Fresh	Fr	Rock substance unaffected by weathering

Rock Strength

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance is the direction normal to the bedding. The test procedure is described by the International Society of Rock Mechanics.

Term	ls (50) MPa	Field Guide	
Extremely low	≤0.03	Easily remoulded by hand to a material with soil properties.	
Very low	>0.03 ≤0.1	May be crumbled in the hand. Sandstone is 'sugary' and friable.	
Low	>0.1 ≤0.3	A piece of core 150mm long x 50mm diameter may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.	
Medium	>0.3 ⊴1.0	A piece of core 150mm long x 50mm diameter can be broken by hand with considerable difficulty. Readily scored with a knife.	м
High	>1 ≤3	A piece of core 150mm long x 50mm diameter cannot be broken by unaided hands, can be slightly scratched or scored with a knife.	
Very high	>3 ≤10	A piece of core 150mm long x 50mm diameter may be broken readily with hand held hammer. Cannot be scratched with pen knife.	
Extremely high	>10	A piece of core 150mm long x 50mm diameter is difficult to break with hand held hammer. Rings when struck with a hammer.	

martens consulting engineers

Rock Data Explanation of Terms (2 of 2)

Degree of Fracturing

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core is discontinuous. These include bedding plane partings, joints and other rock defects, but excludes fractures such as drilling breaks.

Term	Description			
Fragmented	The core is comprised primarily of fragments of length less than 20mm, and mostly of width less than core diameter.			
Highly fractured	Core lengths are generally less than 20mm-40mm with occasional fragments.			
Fractured	Core lengths are mainly 30mm-100mm with occasional shorter and longer sections.			
Slightly fractured	Core lengths are generally 300mm-1000mm with occasional longer sections and occasional sections of 100mm-300mm.			
Unbroken	The core does not contain any fractures.			

Rock Core Recovery

TCR = Total Core Recovery

SCR = Solid Core Recovery

 $= \frac{\sum \text{Length of cylindrical core recovered}}{100\%}$

Lengthofcorerun

RQD = Rock Quality Designation

 $= \frac{\sum \text{Axiallengths of core} > 100 \text{ mm long}}{\times 100\%}$

Lengthof corerun

martens consulting engineers

= Lengthof core recovered Lengthof core run × 100%

Rock Strength Tests

- Point load strength Index (Is50) axial test (MPa)
- Point load strength Index (Is50) diametrall test (MPa)
- Unconfined compressive strength (UCS) (MPa)

Defect Type Abbreviations and Descriptions

Defect Type (with inclination given)		Coating or Filling		Roughness	
BP	Bedding plane parting	Cn	Clean	Ро	Polished
х	Foliation	Sn	Stain	Ro	Rough
L	Cleavage	Ct	Coating	SI	Slickensided
JT	Joint	Fe	Iron Oxide	Sm	Smooth
F	Fracture			Vr	Very rough
SZ Sheared zone (Fault)		Planarity		Inclination	
CS	Crushed seam	Cu	Curved	The inclination of defects are measured from perpendicular to the core axis.	
DS	Decomposed seam	lr	Irregular		
IS	Infilled seam	PI	Planar		
V	Vein	St	Stepped		
	P	Un	Undulating		

Test Methods

Explanation of Terms (1 of 2)

Sampling

Sampling is carried out during drilling or excavation to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples may be taken by pushing a thinwalled sample tube into the soils and withdrawing a soil sample in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils. Other sampling methods may be used. Details of the type and method of sampling are given in the report.

Drilling Methods

The following is a brief summary of drilling methods currently adopted by the Company and some comments on their use and application.

<u>Hand Excavation</u> – in some situations, excavation using hand tools such as mattock and spade may be required due to limited site access or shallow soil profiles.

<u>Hand Auger</u> - the hole is advanced by pushing and rotating either a sand or clay auger generally 75-100mm in diameter into the ground. The depth of penetration is usually limited to the length of the auger pole, however extender pieces can be added to lengthen this.

<u>Test Pits</u> - these are excavated with a backhoe or a tracked excavator, allowing close examination of the *insitu* soils if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (eg. Pengo) - the hole is advanced by a rotating plate or short spiral auger, generally 300mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

<u>Continuous Sample Drilling</u> - the hole is advanced by pushing a 100mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength etc. is only marginally affected.

<u>Continuous Spiral Flight Augers</u> - the hole is advanced using 90 - 115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or *insitu* testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface or, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

Non-core Rotary Drilling - the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

<u>Rotary Mud Drilling</u> - similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

<u>Continuous Core Drilling</u> - a continuous core sample is obtained using a diamond tipped core barrel, usually 50mm internal diameter. Provided full core recovery is achieved (which is not always possible in very weak rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

Standard Penetration Tests

Standard penetration tests are used mainly in noncohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in AS 1289 Methods of Testing Soils for Engineering Purposes - Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

(i) In the case where full penetration is obtained with successive blow counts for each 150mm of say 4, 6 and 7 – blows:

as 4, 6, 7

N = 13

(ii) In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm

as 15, 30/40 mm.

The results of the tests can be related empirically to the engineering properties of the soil. Occasionally, the test method is used to obtain samples in 50mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borelogs in brackets.

CONE PENETROMETER TESTING AND INTERPRETATION

Cone penetrometer testing (sometimes referred to as Dutch Cone - abbreviated as CPT) described in this report has been carried out using an electrical friction cone penetrometer. The test is described in AS 1289 - Test F4.1.

In the test, a 35mm diameter rod with a cone tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on separate 130mm long sleeve, immediately behind the cone. Tranducers in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20mm per second) the information is output on continuous chart

Test Methods

Explanation of Terms (2 of 2)

recorders. The plotted results given in this report have been traced from the original records.

The information provided on the charts comprises: Cone resistance - the actual end bearing force divided by the cross sectional area of the cone - expressed in MPA. Sleeve friction - the frictional force of the sleeve divided by the surface area - expressed in kPa.

Friction ratio - the ratio of sleeve friction to cone resistance - expressed in percent.

There are two scales available for measurement of cone resistance. The lower (A) scale (0 - 5 Mpa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main (B) scale (0 - 50 Mpa) is less sensitive and is shown as a full line.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1%-2% are commonly encountered in sands and very soft clays rising to 4%-10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:

 q_c (Mpa) = (0.4 to 0.6) N (blows/300mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:

q_c = (12 to 18) c_u

Interpretation of CPT values can also be made to allow estimation of modulus or compressibility values to allow calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on soil classification is required, direct drilling and sampling may be preferable.

DYNAMIC CONE (HAND) PENETROMETERS

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150mm increments of penetration. Normally, there is a depth limitation of 1.2m but this may be extended in certain conditions by the use of extension rods. Two relatively similar tests are used.

Perth sand penetrometer - a 16 mm diameter flat ended rod is driven with a 9kg hammer, dropping 600mm (AS 1289 - Test F 3.3). This test was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.

Cone penetrometer (sometimes known as the Scala Penetrometer) - a 16mm rod with a 20mm diameter cone end is driven with a 9kg hammer dropping 510mm (AS 1289 - Test F 3.2). The test was developed initially for pavement sub-grade investigations, with correlations of the test results with California bearing ratio published by various Road Authorities.

LABORATORY TESTING

Laboratory testing is carried out in accordance with AS 1289 Methods of Testing Soil for Engineering Purposes. Details of the test procedure used are given on the individual report forms.

TEST PIT / BORE LOGS

The test pit / bore log(s) presented herein are an engineering and/or geological interpretation of the subsurface conditions and their reliability will depend to some extent on frequency of sampling and the method of excavation / drilling. Ideally, continuous undisturbed sampling or excavation / core drilling will provide the most reliable assessment, but this is not always practicable, or possible to justify on economic grounds. In any case, the boreholes represent only a very small sample of the total subsurface profile. artens

consulting

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes, the frequency of sampling and the possibility of other than 'straight line' variation between the boreholes.

GROUND WATER

Where ground water levels are measured in boreholes, there are several potential problems:

In low permeability soils, ground water although present, may enter the hole slowly, or perhaps not at all during the time it is left open.

A localised perched water table may lead to an erroneous indication of the true water table.

Water table levels will vary from time to time with seasons or recent prior weather changes. They may not be the same at the time of construction as are indicated in the report.

The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.